Equilibrium Behavior of the Sexual Reproduction Process with Rapid Diffusion
نویسندگان
چکیده
منابع مشابه
Quantum Mechanics and the Mechanism of Sexual Reproduction
There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too
متن کاملQuantum Mechanics and the Mechanism of Sexual Reproduction
There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too
متن کاملEffects of Sexual Reproduction
Example 5.5: Near-critical binary splitting. The theorem applies to binary splitting where the probability of division is p(z) = 1/2+1/(2z), and q(z) = 1− p(z) is the probability of no children, if population size is z. Thus, m(z) = 1 + 1/z and the process is supercritical, but approaches criticality as z increases. The probability generating function of the offspring number is fz(s) = q(z) + p...
متن کاملThe non-equilibrium phase transition of the pair-contact process with diffusion
The pair-contact process 2A → 3A, 2A → ∅ with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behavi...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1992
ISSN: 0091-1798
DOI: 10.1214/aop/1176989802